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Abstract: Recently, the “Flexible work hours (FWH) system” is focused as a means to level
the peak of commuting demand. However, for business activities subject to temporal agglom-
eration éfect, the FWH system decreases the number of concurrently working people, and so
the productivity is decreased, even though all workers still work for the same hours as before.
This paper formulates an optimal control problem under the FWH system on motor commut-
ing, considering one-day schedule and temporal agglomeraftiect.e We show that the one

of the optimal distribution patterns for work start time is, some commuters start at fixed time
and others start continuously before or after that fixed time. As a result, we make it clear, how
could the FWH be introduced into firms to realize the optimal pattern. Furthermore, this model
can calculate the sociaftect of the FWH.
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1. INTRODUCTION

In almost all Asian metropolises, as road infrastructure is far below from the satisfaction level,
we are stfering from heavy road congestion and environmental problem due to exhaust gas.
Considering both monetary and space constraints, we cannot expect large amount of road facil-
ities expansion, any more. Therefore, the “Flexible Work Hours (FWH) system” is introduced
recently in order to reduce the peak of commuting demand. FWH is one of the transportation
demand management measures to change the distribution of home departure time, as well as
that of the work start time. However, for business activities, FWH decreases temporal agglom-
eration d€fect on productivity, because this staggers the work start time. Thus, each commuter
chooses hig her home departure time and work start time considering the tfiadetween
commuting disutility that consists of congestion and schedule cost, and inctlieediiated

by work start time.

A lot of studies analyzed theoretically this road congestion problem and the FWH till now.
However, these studies are not concerned with one-day schedule including the return in the
evening or diference of productivity for each work start time.

This paper formulates an optimal control problem with the FWH system under user equilib-
rium situation and system optimal situation on motor commuting. Commuter road has one
bottleneck, and firm’s productivity in a metropolitan area is subject to temporal agglomeration
effect. The purpose of this study is to solve this optimal problem, and to make some feasible
patterns for home departufeeturn time and work start (end) time distributions theoretically.

Furthermore, in this paper we have calculated social utility value for each commuting pattern.

Specifically, we have formulated firm’s productivity, schedule cost arfidreongestion, and

the model can decide home departureturn time and work start (end) time distributions as
endogenous. As aresult, we show the FWH introduction rate, which enable the optimal pattern.
The model can also calculate social utility value for each pattern. We compared the utility value



under the FWH with that under the fixed work start time. Besides, the econdimatseof the
FWH have also been identified in this paper.

2. RELATED STUDIES UP TO NOW

One of the easiest ways to describe the relationship between the demand and trip time along
congested road was queuing theory. A pioneering study utilized queuing theory to describe
waiting time at one bottleneck (Vickrey, 1969), and it was expanded for road network consist
of many links (Filipiak, 1981). When commuters choose their home departure time, they meet
with tradedf between travel time and schedule cost, which is related to ffereince between
desired time and actual departure time. At first, deterministic models, describing sucliffradeo
were developed to investigate the existence or uniqueness of equilibrium (Hendrickson, C.
et al,1981). Remarkable development of logit models in 1980’s enabled reserchers to build
stochastic models and simultaneous models including route choice as well as time selection.
Most of these models divide time axis to several number of periods and formulate discrete
choice models. Continuous optimal condition along time axis were also investigated by optimal
control theory (de Palma, Aet al, 1983, Arnott, Ret al.,1993). Arnott, Ret al(1990) used
deterministic model, and compared the social optimum and no-toll equilibrium. Furthermore,
those were extended to the situation of twfatent types of commuters in desired work start
time (Arnott, R.et al,1998), and stochastic capacity and demand in the bottleneck (Arnott, R.
etal,1999).

It was late 1960’s when the people came to realize that expansion of transportation facilities

couldn’t solve the transportation congestion problem considering the enormous time that it

would take and the forbidden cost for expansion. Then, they began to focus transportation

demand management (TDM) measures such as changing home departure time distribution in
order to level the peak of demand.

In Japan, from more practical viewpoint, social experiments of TDM measures such as stag-
gered commuting became reported in 1990’s. Some of them report TDM measure$ibelve e

to lessen triic congestion. But, on the other hand, strong reluctance of firms to join the stag-
gered work hours antbr flexible work hours, and explanation of its negatifieet on business
efficiency were also reported. Business activities locate in urban area because they expect better
accessibility to other activities and morfeztive interactions with others. Hall(1991) insisted

that such &ect also exists on the time axis and call it by the term of “temporal agglomeration
economy”. When you happen to need urgent communication with some person in other firm, if
the person is not on work, you must wait hirher. FWH have the possibility to increase such
temporal mismatches and harm the temporal agglomerafiecte

The dfect of “temporal agglomeration economy” in commuting with FWH system was first
analyzed by Henderson(1977, 1981). He theoretically proves that firms are subject to temporal
agglomeration economies, and their productiffea is reduced by the staggered work hours in
which each firm starts working atfterent time. However, his model predicts the equilibrium
situation where work start time of firms is distributed continuously. Muret&l(2000) an-
alyzed firm’s incentive to FWH system considering temporal agglomeration. They compared
the firm’s utility under the fixed work start time with that under FWH, and consequently, they
investigated the incentive of firm to introduce the FWH.

If some people change their work start time, they can change their work end time, and they may
return home early, accordingly. Furthermore, temporal agglomeration economyfalss &

the evening, by reducing their productivity, if some people end their work earlier. However, all
these studies are not concerned with one-day schedule including the return in the evening.



3. FORMURATOIN OF THE MODEL

3.1 Problem Settings of Our Study

We assume a single road connecting a residential area and the CBD, which has one bottleneck
just before the CBD. All ofN commuters drive cars to CBD where they have their jobs. No
other transportation mode can be used for commuting, therefore, daily demand is fixed as

the bottleneck. Itis assumed that vehicles are driven at constant speed from home to just before
the bottleneck, and time for this section is equal to consiarggardless of housing location

of the commuters. From this assumption, we can use arrival time distribution at the bottleneck
instead of home departure time distribution. Queue occurs whéittis over bottleneck’s
capacityk (vehicle/ min).

All firms in the city are located at the CBD and have the same technology of production. All

workers work justH minutes a day. The firms can specify the working schedules (i.e. work

start time and work end time) for some group of workers, or introduce FWH system and let
each worker choose hiher working schedule by hirhherself. In latter case, the firmster

to each of the workers flerent wage rate based on the productivity of their work schedules.

3.2 Specification of Commuters Behavior

Utility levels of a representative commutey, in the morning/ evening are defined as the
following functions.

U(a) {—er (M(g) — a(q))} + {—c1 (T2 — m(q))} 1)
V(@) = {-e(b@) - (@)} +{-c2(I(q) - T2)} 2)

where,U(q) : morning part of disutilityVV(q) : evening part of disutilitya(q) : home departure
time, m(q) : office arrival time,l(q) : office leaving timep(q) : return home time.Tq, T,

. arbitrary origin point in time axisg;(> &), (> 0) : slope of queue cost;(> C;, < ),

(> 0,< &) : slope of schedule cost. In these equations the first term represents the disutility
of queue time, second term represents the schedule cost for early departure in the rhorning
late return home in the evening.

Whenever queue occurs at the bottleneckfitautflow rate equalk. Then, considering if
this rate is smaller thak their schedule cost increases along timéid@ arrival timem(q) and
home arrival timeb(q) are represented as follows;

m(g) = s, ()

k
b(@) = 3 +(Si+H) @

where,S; : office arrival time of the first commute8, : work start time of the first commuter.

Firms locating at the CBD utilize the labor force as the single input, and produce numeraire
goods. All firms have the same technology and are subjected to the temporal agglomeration
effect. From the free entry condition, labor market becomes perfectly competitive. Then each
produced value is equally divided among each worker. We formulate it by using instant pro-
duction function like Henderson(1977, 1981) as follows;

ts+H

Y@ = Ap(r)*dr ©)

ts

where,Y(q) : wage rate of commutet, A : technology level parametes(r) : number of the
labor at work in the city at time, ts : work start time of commuteg. « is temporal agglomera-
tion economy parameter, large for the manufacture industry such as automobile manufactures,
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and small for the firms with intellectual works such as consultants and academic institutes.

Now, let us defina(qg) as the work start time af” worker. If work hourH is long enough that
there is an instant when all workers are at work, th@hcan be calculated by;

Bni(t) if te[S1,Sy)
p(t) = BN if te [Sz, S+ H] (6)
B(N-n(t-H)) if te(Si+H,Sy+H]
where,B : number of roads connected to the CBD which are independent of others and have
same bottleneck capacity;(t)(= q) : inverse function ofh(g). S; : work start time of the

first worker,S, : work start time of the last worke®; + H : work end time of the first worker,
S, + H : work end time of the last worker.

As a result, the following equation gives the wage ratgdivorker, Y(q, S1, S,);

S2
Y(9,S1,Sy) = f ABN(7))%dr + AB*N?(S; + H - S))
n(a)

[ Al o ™

S1

Utility level of g is finally defined as the following function;

W(a) = Y(a)+U(g) +V(a) (8

And, social welfare in this system is defined as the following function which is integrated
commuter’s utilityW(q) from O toN;

N
Sw = fo W(g)dg
= fON [Y(q, S1.S)—-e {(E + So) - a(Q)} -C {Tl - (E + So)}
—e:{(§} + (814 H)) - 1@} - 2 1() - T2 | g ©

3.3 User Equilibrium Model under FWH (Second Best)

If workers are told to choose each schedule timesa{®.: home departure timen(q) : work

start (end) time, ant{(q) : office leaving time, as they like without any political intervention,
the distributions of such schedule would be steady on an equilibrium situation, where none
can expect the improvement of hiker utility level by changing higher schedule. Then, the
equilibrium condition can be formulated as follows;

W(a)

ABY (N~ 0)" ") () — (61— &) | + ©18(0) — & + (&~ )0
=0 (10)

where, " denotes a derivative fqr



In order to derive the distributions of equilibrium schedule, we solve the optimal control prob-
lem that maximizes social welfare as eq.(9) with the above equilibrium condition (10);

N
maxSW = fOW(q)dq (12)

51,52

st. W(g) =0 (12)

For the user equilibrium problem formulated above, we can get the analytic formula of feasible
optimal solution. Considering the feasible combinations, we can find that there are only five
commuting patterns of optimal solution satisfying the necessary conditiodfgendix A).

3.4 System Optimum Model under FWH (First Best)

Let us formulate the system optimum FWH problem. Agficaoutflow rate cannot be over

k at the bottleneck, no queue situation gives the optimal situation. As a ra@)lequals to
m(q), andl(q) equals tdd(q). Then, the system optimum FWH problem can be formulated as
the following optimal control problem;

N
- _ _(9 _¢o /9 _
smax SW = fo [Y(q,Sl,Sz) cl{Tl (k+80)} cZ{k+(sl+H) Tz}]dq(13)

st.  Y(@) = AB"{(N-09)" - "} () (14)
n(g) = s(q) (15)

For the system optimal problem formulated above, we can get the analytic formula of feasible
optimal solution. Considering the feasible combinations, we can find that there are only three
commuting patterns of optimal solution (s&ppendix B).

4. NUMERICAL EXAMPLE

In this section, we show numerical examples to use the model formulated in the last section,
and illustrate the commuting distribution patterns; home depaftetern time, dfice arrival/
leaving time and work start (end) time distributions.

Parameter values for the numerical examples below are given as follows except the temporal
agglomeration parameter, ¢, = 10(yerfimin), e, = 50(yerimin), ¢c; = 5(yenmin), e =
30(yerimin), k = 50, N = 5000,B = 10, H = 450(min) except break time=60min), A =
44.4/(50,000). The value ofA here certifiesy = 20000, when all workers begin to work at

a point in time (conventional situation without FWH). When core time starts at 10:00 under
FWH, considering the slope of morning schedule @ss larger than that of evening o,

the last worker always begins to work at 10:00. Then, the origin points in time axis are given
T, =10:00,T, = 16 : 50, which is a point the first worker may end work.

4.1 Typical Commuting Patterns in User Equilibrium

(1) Non-flexible pattern

Figure 1 shows the schedule pattern that maximizes the utility level without introducing FWH
by firms. The morning part of this pattern is the same situation as analyzed by Arneiit R.
al.(1990). All workers are obliged to begin to work at 10:00 in the morning and to work until
18:30 in the evening. In this pattern, home departure time #imkdeaving time distributions

are selected to be equal to the disutility levels, respectively. For example, in the morning last
commuter who encounters largest congestion wait for 20 minutes to pass the bottleneck, but
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that cost is compensated by no wait time before work. In the evening, however, such balancing
between wait in flice and wait in congestion cannot be satisfied in case of the early leavers.
If a worker leaves fiice just after the work end time, Heshe may get no waiting and small
disutility. Their realized disutility is dferent according to departure time. Then workers have
incentive to try to leave ftice as early as possible. As a result, many workers make queue at
the bottleneck, and the realized departure time of each worker becomes probabilistic. In the
equilibrium, the average utility in this queue is the same as others (6@ commuter gets
smallest utility, and waits for 33 minutes to pass the bottleneck.

As shown afterwards ifrigure 6, this non-flexible pattern cannot be chosen as the optimal
pattern in any value of the parameterbut whena is very large, this pattern may give approx-
Imately same value as the optimal pattern.
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(2) Mixed pattern 1

Figure 2 shows the commuting pattern that maximizes the utility level when the temporal
agglomeration fect is not too stronga( = 0.8, in this case). In this case, about 4300 workers
begin to work at same time (9:46), but the other 700 start to work just after their arrival between
9:46 and 10:00 continuously, because agglomerati@cieis weaker compared with reduction

of schedule cost. In the eveningfioe leaving time and home return time distributions are the
same shapes as the first pattern, but 14 minutes shifted forward because the first worker can end
work at 18:16. In this numerical setting, this pattern can be realized by applying FWH system
to only about 700 out of 5000 workers even if any firms cannot actually introduce the FWH
system.

(3) Mixed pattern 2

Figure 3 shows that earlier workers begin to work earlier than 10:00 continuously. Because it
is assumed that, is lager tharc, in our numerical setting, utility level of this pattern cannot
exceed utility level ofpattern (2). In other words, this pattern does not become the optimal
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solution in this setting.

(4) Mixed pattern 3

When the temporal agglomeratioffext parametew is 0.4, optimal commuting pattern is the
mixture of pattern (2) and pattern (3), as shown irFigure 4. 2191 commuters who arrive
office early to avoid congestion in the morning, begin to work between 9:02 and 9:35 without
waiting other commuters, because/fshe can leavefice accordingly earlier in the evening.

On the other hand, 1287 commuters who arrive later at 9:35 begin to work just after arrival,
because hg¢ she reduces congestion cost without significant loss of temporal agglomeration
effect. The other 1522 workers still begin their work at the same time, 9:35.

(5) Total flexible pattern

When temporal agglomeratiorfect is very weakd¢ = 0.2, in this case), all workers utilize

FWH system; they start to work just after arrival in the morning, and leéiveegust after end

to work in the evening, as shown Figure 5. They also return home without waiting at the
bottleneck in the evening. As a result, congestion rate in the morning is decided to balance
the diference of utility based on wage rate and schedule cost. Furthermore, because temporal
agglomeration fect is weak, and dlierence of wage rate is not large, theyfeuabout the

same congestion.

Figure 6 shows the comparison of the utility levels of the above five feasible patterns for sev-
eral values of the temporal agglomeratidieet parameter. While temporal agglomeration
effect is weak ¢ < 0.25), thetotal flexible pattern is best, because the amount of reduction
of the schedule cost in the evening and of the congestion cost are larger than the decrease
of temporal agglomerationfiect. When temporal agglomeratioffext becomes strong, the
mixed pattern 1 becomes optimum. Because tinéxed pattern 3 cannot be feasible because

of dissatisfying jumping condition, as becomes smaller 0.39, timeixed pattern 1 becomes
optimum in this values. However, as the parametdrecomes largera( > 0.39), the utility

level of themixed pattern 3 exceeds thenixed pattern 1 slightly. Whena becomes larger
furthermore, themixed pattern 1 becomes optimum agaia (> 0.52). This pattern keeps its
superiority over theaon-flexible pattern.
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Figure 6. Utility Levels of the Five Patterns under User Equilibrium

4.2 Typical Commuting Patterns in System Optimal Problem

(1) Non-flexible pattern

When temporal agglomeratiotfect is strongnon-flexible pattern becomes optimum. This
pattern is a pattern that removes congestion time in both the morning and the evening from
Figure 1; he/ she departs home just before higer dfice arrival time, and keeps to wait at his

/ her dfice departure just till the return home time, because the slope of congestias st
larger than that of schedule cast

(2) Mixed pattern

Figure 7 shows whenr is not large ¢ = 0.3). 3360 workers start to work at same time, 9:44.
Others begin to work beforgafter 9:44, because total schedule cost can be saved compared
with the amount of decreasing agglomeratidieet.

(3) Total flexible pattern

When temporal agglomeratiorifect is very weakiotal flexible pattern becomes optimum.
This pattern is a pattern that removes congestion time in the morningFrgune 5; he/ she
departs home just before hidier work start time £ office arrival time), and leaves hiher
office (= return home time) just after hiher work end time.

In this system optimal problem, utility level can betdrent for each workeFigure 8 shows

the comparison of the average utility levels of the above three feasible patterns for several
values of the temporal agglomeratioffieet parametet. While temporal agglomeratiortfect

Is weak @@ < 0.18), thetotal flexible pattern is best, because the amount of reducing the
schedule cost is larger than the loss of agglomeratitece When temporal agglomeration
effect becomes strong, timeixed pattern becomes optimum. Furthermore, as the parameter
becomes large(> 0.45), thenon-flexible pattern becomes optimum.

In order to realize the system optimal solution, for example, we must introduce either time
dependent peak-load pricing office tax diferentiated by work schedule to compensate the
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difference of utility level among the workers.

4.3 Comparison with/ without FWH under User Equilibrium / System Optimum

(1) Average values of cost items comparison

Figure 9 shows each average value of cost items withithout FWH system when the is

0.2. We compare (ii)utility level with FWH with (i)utility level of fixed work time under user
equilibrium (U.E.), and findfect to introduce the FWH system. In this numerical example, the
FWH possessed totaftect for 259(yen). In case (ii), wage rate loss is 404(yen), but schedule
cost is saved as much as 450(yen). Although congestion cost becomes zero in the evening, we
notice that congestion cost increase 87(yen) in the morning by the introduction of the FWH.

Furthermore, we compare the system optimum (S.O.) cases, fixed work time is indexed case
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Figure 10. Minimum Introduction Rate of FWH

(iif) and optimal FWH is indexed case (iv). Comparing with the basic case (i), total utilities
increase 800(yen), 866(yen), respectively because of no congestion.

(2) FWH rate comparison

To use the above results, we can also calculate the minimum introduction rate of the FWH
to realize the optimal solution, as shownkigure 10. If the temporal agglomerationfect
parametet is large than 0.52, the required FWH ratio is not large. Only one fifth of total firms
should introduce FWH system to realize the user optimum. When temporal agglomeration
effect becomes weak, introduction rate of the FWH increases, buBatOa < 0.52 (the
mixed pattern 3), introduction rate becomes larger. However, the utility level ofrtheed
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pattern 3 is close to that of thenixed pattern 1, which do not require high introduction rate
of FWH.

5. CONCLUSION

We have proposed the model to analyze the optimal commuting and work start time distribution
under FWH on motor commuting considering temporal agglomerati@cteon productivity

and commuter behavior in the evening. Based on our model, we have shown theoretically that
only five patterns appear in user equilibrium, and only three patterns appear in system opti-
mum. Through numerical examples, we have calculated utility level for each pattern, and have
confirmed the fect of the FWH. Furthermore, we have calculated the minimum introduction
rate of the FWH to realize the optimal situation.

It should be noted, however, that we set very strong assumptions such as commuter’s behavior
neglects personal fierence, and all firms are uniform. From the viewpoint of travel behavior
modeling, these models seem far from the reality. But owing to the simplifications, we get an-
alytical tractability. If we combine more reliable parameter values based on behavior analysis,

we can expect the market equilibrium anfeet of policies more precisely. Furthermore, we
need to extend to multi-modal case, in order to approach more reality.
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Appendix A. USER EQUILIBRIUM SOLUTION

For the user equilibrium problem formulated in thection 3.3 analytic solutions of the five
feasible optimal patterns can be obtained as follows.

(1) Non-flexible pattern
The solutions of th@on-flexible pattern are represented as follows;

a@ = 2-%a+(s:- ) (16)

o) = a+(S- 1) an

@ = Si=S (19)
_ e N

I(q) = m(q—N)+(Sl+H+E) (19)

b@) = 7+ (Si+H) (20)

Our model assumes that there is ndticaflow at the bottleneck except commuting time. Under
the non-flexible pattern, if commuter can arrive first at the bottleneck, fghe gets smallest
disutility, because h¢ she passes without congestion and return home earliest. Then some
people who want to get smaller disutility try to leav@ice just after work end time, but if he

/ she cannot line up earlier at the bottleneck/ Bae will sufer disutility larger than average
disutility of evening part. In order to represent this phenomenon, we defice éeaving time
functionl(q) as follows again;

S, +H if q< ZZN
(@) = (21)
€ ( N) . 2coN
———(@-N)+(S1+H+—]) if >
& cyk a5 k &

The above function means disutility ab(N/&,)"(= §/2) commuter who are middle number of
commuters to leaveffice atS; + H equals to the average disultility.

(2) Mixed pattern 1

This pattern shows that earlier commuters are non-flexible work and later ones take flexible
work pattern. The solutions fan(q), 1(g) andb(q) are the same gmattern (1). Other solutions,

a(g) andn(q) are divided atjwhich means the number of the non-flexible workers, can be given
with the following formula;

ele:kclq ; (s2 _ %) if q<§
AB” a+l a+1 ~\a+1 ~a+1
a(Q) = ek(@+1) [{(N -+ } - {(N - +4 }] (22)
+ele:kclq+(82—%) if g>4q

13



IA
O

Sl if g
= 23
e {%CH(SZ—%) (=m@) i q>4 )

(3) Mixed pattern 2

In this pattern, earlier commuters take flexible work and later ones are non-flexible workers.
The solutions for(q), m(q) andb(q) are the same gsattern (1). On the other handy(q) and

I(q) are divided afj indicating the proportion of flexible workers,

. 3 & 1
0= e arae

10) =Sy +H, 1(d) = 1(@") if q<§ (24)
|(Q):ﬁ((q—N)+(Sl+H+%) if q>§
1(q) if q<§
n(@) +H {SZ+H it q>§ (25)

where, the first equation of eq.(24) isférential equation fog with initial condition, as well
as terminal condition, that both functions for eq.(24) take the same vafue at

(4) Mixed pattern 3

This pattern contains three types of workers; middle commuters are non-flexible work, and at
both sides workers take flexible work. That is represented as the combinatattem (2)
andpattern (3), and described by eq.(17), (20) and (22)-(25). Two switching pajrasdq

can be determined by initial and terminal conditions.

(5) Total flexible pattern
The solutions of théotal flexible pattern are represented as follows;

€ -G +C AB* a+ a+ a+ N
a0 = = 2q+e1k(a+1){(N_Q) Lgtt-N 1}+(SZ—E) (26)
o) = (@)= pa+(So- ) 27)
n@+H = 1@ =b() = a+ (S + H) (29)

Appendix B. SYSTEM OPTIMAL SOLUTION

For the system optimal problem formulated in tection 3.4 the analytic solutions of the
three feasible optimal solution patterns can be obtained as follows.

(1) Non-flexible pattern
The solutions of th@on-flexible pattern are represented as follows;

ae) = ma@)=a+ (S ) (29)
@ = S-S, (30
@ = b(@ = [a+(Si+H) (31)
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(2) Mixed pattern
In this pattern, middle commuters take non-flexible work, and the others at both sides are
flexible workers. The solutions @{q), m(q), 1(g) andb(q) are the same gsattern (1).

l(qg—-H if gq<d
n(q = Sl+q—k1 if L <q<d (32)

m@ if g>0d
where,qi, Gz (> 61) : switching point.

(3) Total flexible pattern
The solutions of théotal flexible pattern are represented as follows;

a@ = ma)=n(@=a+(S- ) (33)

n@+H = 1) =ba) = 7q+ (S1+ H) (34)
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