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Abstract: Recently, the “Flexible work hours (FWH) system” is focused as a means to level
the peak of commuting demand. However, for business activities subject to temporal agglom-
eration effect, the FWH system decreases the number of concurrently working people, and so
the productivity is decreased, even though all workers still work for the same hours as before.
This paper formulates an optimal control problem under the FWH system on motor commut-
ing, considering one-day schedule and temporal agglomeration effect. We show that the one
of the optimal distribution patterns for work start time is, some commuters start at fixed time
and others start continuously before or after that fixed time. As a result, we make it clear, how
could the FWH be introduced into firms to realize the optimal pattern. Furthermore, this model
can calculate the social effect of the FWH.
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1. INTRODUCTION

In almost all Asian metropolises, as road infrastructure is far below from the satisfaction level,
we are suffering from heavy road congestion and environmental problem due to exhaust gas.
Considering both monetary and space constraints, we cannot expect large amount of road facil-
ities expansion, any more. Therefore, the “Flexible Work Hours (FWH) system” is introduced
recently in order to reduce the peak of commuting demand. FWH is one of the transportation
demand management measures to change the distribution of home departure time, as well as
that of the work start time. However, for business activities, FWH decreases temporal agglom-
eration effect on productivity, because this staggers the work start time. Thus, each commuter
chooses his/ her home departure time and work start time considering the tradeoff between
commuting disutility that consists of congestion and schedule cost, and income differentiated
by work start time.

A lot of studies analyzed theoretically this road congestion problem and the FWH till now.
However, these studies are not concerned with one-day schedule including the return in the
evening or difference of productivity for each work start time.

This paper formulates an optimal control problem with the FWH system under user equilib-
rium situation and system optimal situation on motor commuting. Commuter road has one
bottleneck, and firm’s productivity in a metropolitan area is subject to temporal agglomeration
effect. The purpose of this study is to solve this optimal problem, and to make some feasible
patterns for home departure/ return time and work start (end) time distributions theoretically.
Furthermore, in this paper we have calculated social utility value for each commuting pattern.

Specifically, we have formulated firm’s productivity, schedule cost and traffic congestion, and
the model can decide home departure/ return time and work start (end) time distributions as
endogenous. As a result, we show the FWH introduction rate, which enable the optimal pattern.
The model can also calculate social utility value for each pattern. We compared the utility value
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under the FWH with that under the fixed work start time. Besides, the economic effects of the
FWH have also been identified in this paper.

2. RELATED STUDIES UP TO NOW

One of the easiest ways to describe the relationship between the demand and trip time along
congested road was queuing theory. A pioneering study utilized queuing theory to describe
waiting time at one bottleneck (Vickrey, 1969), and it was expanded for road network consist
of many links (Filipiak, 1981). When commuters choose their home departure time, they meet
with tradeoff between travel time and schedule cost, which is related to the difference between
desired time and actual departure time. At first, deterministic models, describing such tradeoff,
were developed to investigate the existence or uniqueness of equilibrium (Hendrickson, C.
et al.,1981). Remarkable development of logit models in 1980’s enabled reserchers to build
stochastic models and simultaneous models including route choice as well as time selection.
Most of these models divide time axis to several number of periods and formulate discrete
choice models. Continuous optimal condition along time axis were also investigated by optimal
control theory (de Palma, A.et al.,1983, Arnott, R.et al.,1993). Arnott, R.et al.(1990) used
deterministic model, and compared the social optimum and no-toll equilibrium. Furthermore,
those were extended to the situation of two different types of commuters in desired work start
time (Arnott, R.et al.,1998), and stochastic capacity and demand in the bottleneck (Arnott, R.
et al.,1999).

It was late 1960’s when the people came to realize that expansion of transportation facilities
couldn’t solve the transportation congestion problem considering the enormous time that it
would take and the forbidden cost for expansion. Then, they began to focus transportation
demand management (TDM) measures such as changing home departure time distribution in
order to level the peak of demand.

In Japan, from more practical viewpoint, social experiments of TDM measures such as stag-
gered commuting became reported in 1990’s. Some of them report TDM measures have effect
to lessen traffic congestion. But, on the other hand, strong reluctance of firms to join the stag-
gered work hours and/ or flexible work hours, and explanation of its negative effect on business
efficiency were also reported. Business activities locate in urban area because they expect better
accessibility to other activities and more effective interactions with others. Hall(1991) insisted
that such effect also exists on the time axis and call it by the term of “temporal agglomeration
economy”. When you happen to need urgent communication with some person in other firm, if
the person is not on work, you must wait him/ her. FWH have the possibility to increase such
temporal mismatches and harm the temporal agglomeration effect.

The effect of “temporal agglomeration economy” in commuting with FWH system was first
analyzed by Henderson(1977, 1981). He theoretically proves that firms are subject to temporal
agglomeration economies, and their productive effect is reduced by the staggered work hours in
which each firm starts working at different time. However, his model predicts the equilibrium
situation where work start time of firms is distributed continuously. Mun, S.et al.(2000) an-
alyzed firm’s incentive to FWH system considering temporal agglomeration. They compared
the firm’s utility under the fixed work start time with that under FWH, and consequently, they
investigated the incentive of firm to introduce the FWH.

If some people change their work start time, they can change their work end time, and they may
return home early, accordingly. Furthermore, temporal agglomeration economy also effects in
the evening, by reducing their productivity, if some people end their work earlier. However, all
these studies are not concerned with one-day schedule including the return in the evening.
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3. FORMURATOIN OF THE MODEL

3.1 Problem Settings of Our Study

We assume a single road connecting a residential area and the CBD, which has one bottleneck
just before the CBD. All ofN commuters drive cars to CBD where they have their jobs. No
other transportation mode can be used for commuting, therefore, daily demand is fixed asN at
the bottleneck. It is assumed that vehicles are driven at constant speed from home to just before
the bottleneck, and time for this section is equal to constantw regardless of housing location
of the commuters. From this assumption, we can use arrival time distribution at the bottleneck
instead of home departure time distribution. Queue occurs when traffic is over bottleneck’s
capacityk (vehicle/ min).

All firms in the city are located at the CBD and have the same technology of production. All
workers work justH minutes a day. The firms can specify the working schedules (i.e. work
start time and work end time) for some group of workers, or introduce FWH system and let
each worker choose his/ her working schedule by him/ herself. In latter case, the firms offer
to each of the workers different wage rate based on the productivity of their work schedules.

3.2 Specification of Commuters Behavior

Utility levels of a representative commuter,q, in the morning/ evening are defined as the
following functions.

U(q) = {−e1 (m(q) − a(q))} + {−c1 (T1 −m(q))} (1)
V(q) = {−e2 (b(q) − l(q))} + {−c2 (l(q) − T2)} (2)

where,U(q) : morning part of disutility,V(q) : evening part of disutility.a(q) : home departure
time, m(q) : office arrival time,l(q) : office leaving time,b(q) : return home time.T1, T2
: arbitrary origin point in time axis,e1(> e2), e2(> 0) : slope of queue cost,c1(> c2, < e1),
c2(> 0, < e2) : slope of schedule cost. In these equations the first term represents the disutility
of queue time, second term represents the schedule cost for early departure in the morning/
late return home in the evening.

Whenever queue occurs at the bottleneck, traffic outflow rate equalsk. Then, considering if
this rate is smaller thank, their schedule cost increases along time. Office arrival timem(q) and
home arrival timeb(q) are represented as follows;

m(q) =
q
k

+ S0 (3)

b(q) =
q
k

+ (S1 + H) (4)

where,S0 : office arrival time of the first commuter,S1 : work start time of the first commuter.

Firms locating at the CBD utilize the labor force as the single input, and produce numeraire
goods. All firms have the same technology and are subjected to the temporal agglomeration
effect. From the free entry condition, labor market becomes perfectly competitive. Then each
produced value is equally divided among each worker. We formulate it by using instant pro-
duction function like Henderson(1977, 1981) as follows;

Y(q) =

∫ ts+H

ts

Aρ(τ)αdτ (5)

where,Y(q) : wage rate of commuterq, A : technology level parameter,ρ(τ) : number of the
labor at work in the city at timeτ, ts : work start time of commuterq. α is temporal agglomera-
tion economy parameter, large for the manufacture industry such as automobile manufactures,
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and small for the firms with intellectual works such as consultants and academic institutes.

Now, let us definen(q) as the work start time ofqth worker. If work hourH is long enough that
there is an instant when all workers are at work, thenρ(t) can be calculated by;

ρ(t) =



Bn−1(t) if t ∈ [S1,S2)

BN if t ∈ [S2,S1 + H]

B
(
N − n−1(t − H)

)
if t ∈ (S1 + H,S2 + H]

(6)

where,B : number of roads connected to the CBD which are independent of others and have
same bottleneck capacity,n−1(t)(= q) : inverse function ofn(q). S1 : work start time of the
first worker,S2 : work start time of the last worker,S1 + H : work end time of the first worker,
S2 + H : work end time of the last worker.

As a result, the following equation gives the wage rate ofqth worker,Y(q,S1,S2);

Y(q,S1,S2) =

∫ S2

n(q)
A(Bn−1(τ))αdτ + ABαNα (S1 + H − S2)

+

∫ n(q)

S1

A
{
B

(
N − n−1(τ)

)}α
dτ (7)

Utility level of q is finally defined as the following function;

W(q) = Y(q) + U(q) + V(q) (8)

And, social welfare in this system is defined as the following function which is integrated
commuter’s utilityW(q) from 0 toN;

S W =

∫ N

0
W(q)dq

=

∫ N

0

[
Y(q,S1,S2) − e1

{(q
k

+ S0

)
− a(q)

}
− c1

{
T1 −

(q
k

+ S0

)}

−e2

{(q
k

+ (S1 + H)
)
− l(q)

}
− c2 {l(q) − T2}

]
dq (9)

3.3 User Equilibrium Model under FWH (Second Best)

If workers are told to choose each schedule times, i.e.a(q) : home departure time ,n(q) : work
start (end) time, andl(q) : office leaving time, as they like without any political intervention,
the distributions of such schedule would be steady on an equilibrium situation, where none
can expect the improvement of his/ her utility level by changing his/ her schedule. Then, the
equilibrium condition can be formulated as follows;

Ẇ(q) = ABα {(N − q)α − qα} ṅ(q) − (e1 − c1)
1
k

+ e1ȧ(q) − e2
1
k

+ (e2 − c2) l̇(q)

= 0 (10)

where, ˙ denotes a derivative forq.
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In order to derive the distributions of equilibrium schedule, we solve the optimal control prob-
lem that maximizes social welfare as eq.(9) with the above equilibrium condition (10);

max
S1,S2

S W =

∫ N

0
W(q)dq (11)

s.t. Ẇ(q) = 0 (12)

For the user equilibrium problem formulated above, we can get the analytic formula of feasible
optimal solution. Considering the feasible combinations, we can find that there are only five
commuting patterns of optimal solution satisfying the necessary condition (seeAppendix A).

3.4 System Optimum Model under FWH (First Best)

Let us formulate the system optimum FWH problem. As traffic outflow rate cannot be over
k at the bottleneck, no queue situation gives the optimal situation. As a result,a(q) equals to
m(q), andl(q) equals tob(q). Then, the system optimum FWH problem can be formulated as
the following optimal control problem;

max
S1,S2,s(q)

S W =

∫ N

0

[
Y(q,S1,S2) − c1

{
T1 −

(q
k

+ S0

)}
− c2

{q
k

+ (S1 + H) − T2

}]
dq(13)

s.t. Ẏ(q) = ABα {(N − q)α − qα} s(q) (14)
ṅ(q) ≡ s(q) (15)

For the system optimal problem formulated above, we can get the analytic formula of feasible
optimal solution. Considering the feasible combinations, we can find that there are only three
commuting patterns of optimal solution (seeAppendix B).

4. NUMERICAL EXAMPLE

In this section, we show numerical examples to use the model formulated in the last section,
and illustrate the commuting distribution patterns; home departure/ return time, office arrival/
leaving time and work start (end) time distributions.

Parameter values for the numerical examples below are given as follows except the temporal
agglomeration parameterα; c1 = 10(yen/min), e1 = 50(yen/min), c2 = 5(yen/min), e2 =
30(yen/min), k = 50, N = 5000,B = 10, H = 450(min) except break time (=60min), A =
44.4/(50,000)α. The value ofA here certifiesY = 20000, when all workers begin to work at
a point in time (conventional situation without FWH). When core time starts at 10:00 under
FWH, considering the slope of morning schedule costc1 is larger than that of evening onec2,
the last worker always begins to work at 10:00. Then, the origin points in time axis are given
T1 = 10 : 00,T2 = 16 : 50, which is a point the first worker may end work.

4.1 Typical Commuting Patterns in User Equilibrium

(1) Non-flexible pattern
Figure 1 shows the schedule pattern that maximizes the utility level without introducing FWH
by firms. The morning part of this pattern is the same situation as analyzed by Arnott R.et
al.(1990). All workers are obliged to begin to work at 10:00 in the morning and to work until
18:30 in the evening. In this pattern, home departure time and office leaving time distributions
are selected to be equal to the disutility levels, respectively. For example, in the morning last
commuter who encounters largest congestion wait for 20 minutes to pass the bottleneck, but
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Figure 1. Non-Flexible Pattern under User Equilibrium

Figure 2. Mixed Pattern 1 under User Equilibrium (α = 0.8)

that cost is compensated by no wait time before work. In the evening, however, such balancing
between wait in office and wait in congestion cannot be satisfied in case of the early leavers.
If a worker leaves office just after the work end time, he/ she may get no waiting and small
disutility. Their realized disutility is different according to departure time. Then workers have
incentive to try to leave office as early as possible. As a result, many workers make queue at
the bottleneck, and the realized departure time of each worker becomes probabilistic. In the
equilibrium, the average utility in this queue is the same as others. 1666th(= q̂) commuter gets
smallest utility, and waits for 33 minutes to pass the bottleneck.

As shown afterwards inFigure 6, this non-flexible pattern cannot be chosen as the optimal
pattern in any value of the parameterα, but whenα is very large, this pattern may give approx-
imately same value as the optimal pattern.
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Figure 3. Mixed Pattern 2 under User Equilibrium (α = 0.4)

Figure 4. Mixed Pattern 3 under User Equilibrium (α = 0.4)

(2) Mixed pattern 1
Figure 2 shows the commuting pattern that maximizes the utility level when the temporal
agglomeration effect is not too strong (α = 0.8, in this case). In this case, about 4300 workers
begin to work at same time (9:46), but the other 700 start to work just after their arrival between
9:46 and 10:00 continuously, because agglomeration effect is weaker compared with reduction
of schedule cost. In the evening, office leaving time and home return time distributions are the
same shapes as the first pattern, but 14 minutes shifted forward because the first worker can end
work at 18:16. In this numerical setting, this pattern can be realized by applying FWH system
to only about 700 out of 5000 workers even if any firms cannot actually introduce the FWH
system.

(3) Mixed pattern 2
Figure 3 shows that earlier workers begin to work earlier than 10:00 continuously. Because it
is assumed thatc1 is lager thanc2 in our numerical setting, utility level of this pattern cannot
exceed utility level ofpattern (2). In other words, this pattern does not become the optimal
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Figure 5. Total Flexible Pattern under User Equilibrium (α = 0.2)

solution in this setting.

(4) Mixed pattern 3
When the temporal agglomeration effect parameterα is 0.4, optimal commuting pattern is the
mixture of pattern (2) andpattern (3), as shown inFigure 4. 2191 commuters who arrive
office early to avoid congestion in the morning, begin to work between 9:02 and 9:35 without
waiting other commuters, because he/ she can leave office accordingly earlier in the evening.
On the other hand, 1287 commuters who arrive later at 9:35 begin to work just after arrival,
because he/ she reduces congestion cost without significant loss of temporal agglomeration
effect. The other 1522 workers still begin their work at the same time, 9:35.

(5) Total flexible pattern
When temporal agglomeration effect is very weak (α = 0.2, in this case), all workers utilize
FWH system; they start to work just after arrival in the morning, and leave office just after end
to work in the evening, as shown inFigure 5. They also return home without waiting at the
bottleneck in the evening. As a result, congestion rate in the morning is decided to balance
the difference of utility based on wage rate and schedule cost. Furthermore, because temporal
agglomeration effect is weak, and difference of wage rate is not large, they suffer about the
same congestion.

Figure 6 shows the comparison of the utility levels of the above five feasible patterns for sev-
eral values of the temporal agglomeration effect parameterα. While temporal agglomeration
effect is weak (α < 0.25), thetotal flexible pattern is best, because the amount of reduction
of the schedule cost in the evening and of the congestion cost are larger than the decrease
of temporal agglomeration effect. When temporal agglomeration effect becomes strong, the
mixed pattern 1 becomes optimum. Because themixed pattern 3 cannot be feasible because
of dissatisfying jumping condition, asα becomes smaller 0.39, themixed pattern 1 becomes
optimum in this values. However, as the parameterα becomes larger (α > 0.39), the utility
level of themixed pattern 3 exceeds themixed pattern 1 slightly. Whenα becomes larger
furthermore, themixed pattern 1 becomes optimum again (α > 0.52). This pattern keeps its
superiority over thenon-flexible pattern.
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Figure 6. Utility Levels of the Five Patterns under User Equilibrium

4.2 Typical Commuting Patterns in System Optimal Problem

(1) Non-flexible pattern
When temporal agglomeration effect is strong,non-flexible pattern becomes optimum. This
pattern is a pattern that removes congestion time in both the morning and the evening from
Figure 1; he/ she departs home just before his/ her office arrival time, and keeps to wait at his
/ her office departure just till the return home time, because the slope of congestion coste2 is
larger than that of schedule costc2.

(2) Mixed pattern
Figure 7 shows whenα is not large (α = 0.3). 3360 workers start to work at same time, 9:44.
Others begin to work before/ after 9:44, because total schedule cost can be saved compared
with the amount of decreasing agglomeration effect.

(3) Total flexible pattern
When temporal agglomeration effect is very weak,total flexible pattern becomes optimum.
This pattern is a pattern that removes congestion time in the morning fromFigure 5; he / she
departs home just before his/ her work start time (= office arrival time), and leaves his/ her
office (= return home time) just after his/ her work end time.

In this system optimal problem, utility level can be different for each worker.Figure 8 shows
the comparison of the average utility levels of the above three feasible patterns for several
values of the temporal agglomeration effect parameterα. While temporal agglomeration effect
is weak (α < 0.18), thetotal flexible pattern is best, because the amount of reducing the
schedule cost is larger than the loss of agglomeration effect. When temporal agglomeration
effect becomes strong, themixed pattern becomes optimum. Furthermore, as the parameterα
becomes larger (α > 0.45), thenon-flexible pattern becomes optimum.

In order to realize the system optimal solution, for example, we must introduce either time
dependent peak-load pricing or office tax differentiated by work schedule to compensate the
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Figure 7. Mixed Pattern under System Optimum (α = 0.3)

Figure 8. Utility Levels of the Three Patterns under System Optimum

difference of utility level among the workers.

4.3 Comparison with / without FWH under User Equilibrium / System Optimum

(1) Average values of cost items comparison
Figure 9 shows each average value of cost items with/ without FWH system when theα is
0.2. We compare (ii)utility level with FWH with (i)utility level of fixed work time under user
equilibrium (U.E.), and find effect to introduce the FWH system. In this numerical example, the
FWH possessed total effect for 259(yen). In case (ii), wage rate loss is 404(yen), but schedule
cost is saved as much as 450(yen). Although congestion cost becomes zero in the evening, we
notice that congestion cost increase 87(yen) in the morning by the introduction of the FWH.

Furthermore, we compare the system optimum (S.O.) cases, fixed work time is indexed case
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Figure 9. Average Values of Cost Items with/ without FWH (α = 0.2)

Figure 10. Minimum Introduction Rate of FWH

(iii) and optimal FWH is indexed case (iv). Comparing with the basic case (i), total utilities
increase 800(yen), 866(yen), respectively because of no congestion.

(2) FWH rate comparison
To use the above results, we can also calculate the minimum introduction rate of the FWH
to realize the optimal solution, as shown inFigure 10. If the temporal agglomeration effect
parameterα is large than 0.52, the required FWH ratio is not large. Only one fifth of total firms
should introduce FWH system to realize the user optimum. When temporal agglomeration
effect becomes weak, introduction rate of the FWH increases, but at 0.39 < α < 0.52 (the
mixed pattern 3), introduction rate becomes larger. However, the utility level of themixed
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pattern 3 is close to that of themixed pattern 1, which do not require high introduction rate
of FWH.

5. CONCLUSION

We have proposed the model to analyze the optimal commuting and work start time distribution
under FWH on motor commuting considering temporal agglomeration effect on productivity
and commuter behavior in the evening. Based on our model, we have shown theoretically that
only five patterns appear in user equilibrium, and only three patterns appear in system opti-
mum. Through numerical examples, we have calculated utility level for each pattern, and have
confirmed the effect of the FWH. Furthermore, we have calculated the minimum introduction
rate of the FWH to realize the optimal situation.

It should be noted, however, that we set very strong assumptions such as commuter’s behavior
neglects personal difference, and all firms are uniform. From the viewpoint of travel behavior
modeling, these models seem far from the reality. But owing to the simplifications, we get an-
alytical tractability. If we combine more reliable parameter values based on behavior analysis,
we can expect the market equilibrium and effect of policies more precisely. Furthermore, we
need to extend to multi-modal case, in order to approach more reality.
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Appendix A. USER EQUILIBRIUM SOLUTION

For the user equilibrium problem formulated in thesection 3.3, analytic solutions of the five
feasible optimal patterns can be obtained as follows.

(1) Non-flexible pattern
The solutions of thenon-flexible pattern are represented as follows;

a(q) =
e1 − c1

e1k
q +

(
S2 − N

k

)
(16)

m(q) =
1
k

q +

(
S2 − N

k

)
(17)

n(q) = S1 = S2 (18)

l(q) =
e2

(e2 − c2) k
(q− N) +

(
S1 + H +

N
k

)
(19)

b(q) =
1
k

q + (S1 + H) (20)

Our model assumes that there is no traffic flow at the bottleneck except commuting time. Under
thenon-flexible pattern, if commuter can arrive first at the bottleneck, he/ she gets smallest
disutility, because he/ she passes without congestion and return home earliest. Then some
people who want to get smaller disutility try to leave office just after work end time, but if he
/ she cannot line up earlier at the bottleneck, he/ she will suffer disutility larger than average
disutility of evening part. In order to represent this phenomenon, we define office leaving time
function l(q) as follows again;

l(q) =



S1 + H if q ≤ 2c2N
e2

e2

(e2 − c2) k
(q− N) +

(
S1 + H +

N
k

)
if q >

2c2N
e2

(21)

The above function means disutility of (c2N/e2)th(≡ q̂/2) commuter who are middle number of
commuters to leave office atS1 + H equals to the average disutility.

(2) Mixed pattern 1
This pattern shows that earlier commuters are non-flexible work and later ones take flexible
work pattern. The solutions form(q), l(q) andb(q) are the same aspattern (1). Other solutions,
a(q) andn(q) are divided at ˜q which means the number of the non-flexible workers, can be given
with the following formula;

a(q) =



e1 − c1

e1k
q +

(
S2 − N

k

)
if q ≤ q̃

ABα

e1k (α + 1)

[{
(N − q)α+1 + qα+1

}
−

{
(N − q̃)α+1 + q̃α+1

}]

+
e1 − c1

e1k
q +

(
S2 − N

k

)
if q > q̃

(22)
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n(q) =


S1 if q ≤ q̃
1
k

q +

(
S2 − N

k

)
(= m(q)) if q > q̃

(23)

(3) Mixed pattern 2
In this pattern, earlier commuters take flexible work and later ones are non-flexible workers.
The solutions fora(q), m(q) andb(q) are the same aspattern (1). On the other hand,n(q) and
l(q) are divided at̃̃q indicating the proportion of flexible workers,



l̇(q) =

(e2

k

) ( 1
ABα {(N − q)α − qα} + e2 − c2

)

l(0) = S1 + H, l( ˜̃q−) = l( ˜̃q+) if q < ˜̃q

l(q) =
e2

(e2 − c2) k
(q− N) +

(
S1 + H +

N
k

)
if q ≥ ˜̃q

(24)

n(q) + H =

{
l(q) if q < ˜̃q

S2 + H if q ≥ ˜̃q
(25)

where, the first equation of eq.(24) is differential equation forq with initial condition, as well
as terminal condition, that both functions for eq.(24) take the same value at˜̃q.

(4) Mixed pattern 3
This pattern contains three types of workers; middle commuters are non-flexible work, and at
both sides workers take flexible work. That is represented as the combination ofpattern (2)
andpattern (3), and described by eq.(17), (20) and (22)-(25). Two switching points ˜q and ˜̃q
can be determined by initial and terminal conditions.

(5) Total flexible pattern
The solutions of thetotal flexible pattern are represented as follows;

a(q) =
e1 − c1 + c2

e1k
q +

ABα

e1k(α + 1)

{
(N − q)α+1 + qα+1 − Nα+1

}
+

(
S2 − N

k

)
(26)

m(q) = n(q) =
1
k

q +

(
S2 − N

k

)
(27)

n(q) + H = l(q) = b(q) =
1
k

q + (S1 + H) (28)

Appendix B. SYSTEM OPTIMAL SOLUTION

For the system optimal problem formulated in thesection 3.4, the analytic solutions of the
three feasible optimal solution patterns can be obtained as follows.

(1) Non-flexible pattern
The solutions of thenon-flexible pattern are represented as follows;

a(q) = m(q) =
1
k

q +

(
S2 − N

k

)
(29)

n(q) = S1 = S2 (30)

l(q) = b(q) =
1
k

q + (S1 + H) (31)
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(2) Mixed pattern
In this pattern, middle commuters take non-flexible work, and the others at both sides are
flexible workers. The solutions ofa(q), m(q), l(q) andb(q) are the same aspattern (1).

n(q) =



l(q) − H if q < q̃1

S1 +
q̃1

k
if q̃1 ≤ q ≤ q̃2

m(q) if q > q̃2

(32)

where,q̃1, q̃2 (> q̃1) : switching point.

(3) Total flexible pattern
The solutions of thetotal flexible pattern are represented as follows;

a(q) = m(q) = n(q) =
1
k

q +

(
S2 − N

k

)
(33)

n(q) + H = l(q) = b(q) =
1
k

q + (S1 + H) (34)
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