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Abstract: Recently, “Congestion charging” policy is considered as the quickest and most
effective policy to solve traffic congestion problem, and some metropolises have introduced it
into their downtown roads. Most of these metropolises have alternate transport systems, such
as subways or commuter rail, then the congestion charging influences modal split. It is also
important to decide how to return the revenue from the charging to the commuters, because
return policy affects on the agreement of the commuters. In this paper, we propose and solve
optimal control models simultaneously determining the distribution of home departure time
and the modal choice between road and railroad with/ without the congestion charging. We
theoretically make clear the optimal congestion charge each time of day for each transport
mode. Furthermore, we analyze influence of return scheme on the modal choice. From results
of numerical simulations using above models, charging and return to railroad commuters is
proved to be effective scheme to improve commuters’ utility and to reduce the number of
automobile commuters.

Key Words: Charging and return schemes, Modal choice, Commuting time distribution

1. INTRODUCTION

In most Asian metropolises, because road and railroad infrastructures are far from the satis-
fied level, they are suffering from heavy traffic congestions and environmental problem due
to exhaust gas on motor commuting. We should be required to settle these traffic congestion
problems quickly in order to reduce economic and environmental loss. However, considering
the limit of budget and a long time period for construction, we cannot expect a large amount
of traffic infrastructures expansion, any more. Recently, therefore, the “Transportation demand
management (TDM)” policies are expected in order to level the peaks of commuting demand
temporally. “Staggered work hours” and “Flexible work hours” are considered as more feasible
policies from the aspect of introduction and operation costs. These policies have already prac-
ticed in social experiments, and we have confirmed that they can reduce traffic congestion, and
local governments hope to promote these policies. However, most firms do not introduce these
policies, because they suspect decrease of efficiency of business activities. For the reasons men-
tioned above, “Congestion charging” policy becomes considered as the most promising policy,
because we can directly control the commuting demand and compensate the possible loss of
business activities by TDM policies above. Some metropolises (e.g. Singapore) have already
introduced this policy into their downtown roads. In these metropolises, charge is constant
in particular period of time in a day, but variable day by day. We should charge the optimal
and different amount on each time of day in a day if we carry out this policy more effective.
Most metropolises expecting the congestion charging have alternate transport systems (e.g.
commuter train/ subway). Therefore, the congestion charging may influence on modal split
between road and railroad. Furthermore, because revenue is occurred by charging, in contrast
with other TDM policies, it is important to decide how to return the revenue to the commuters
(e.g. the government can use the revenue for improving railroad service level). Theoretically, it
is said that we should use the revenue improving the service level of the traffic infrastructure in
the long run. However, considering the difficulties for the traffic infrastructure investments, it



may be realistic to return the revenue directly to commuters. The electronic toll collecting sys-
tem enables us to carry out these charging and return schemes easily. If we return the revenue
to other mode commuters, we can shift the modal choice of commuters. Then, we should make
clear what effects are given by the congestion charging and return schemes on modal choice,
in order to operate the congestion charging, successfully.

In this paper, we propose and solve theoretical optimal control models to simultaneously deter-
mine the distribution of home departure time and the modal choice between road and railroad
with/ without the congestion charging. We theoretically make clear the optimal congestion
charge each time of day for each transport mode. Furthermore, we analyze the influence of
return scheme on the modal choice between road and railroad in the context of fixed infrastruc-
ture levels.

2. RELATED STUDIES UP TO NOW

One of the easiest ways to describe the relationship between the demand and trip time along
congested road is queuing theory. A pioneering study utilized queuing theory to describe wait-
ing time at one bottleneck (Vickrey, 1969). When commuters choose their home departure
time, they meet with trade-off between travel time and schedule cost, which is related to the
difference between desired time and actual departure time. Arnott, R.et al. (1990) expanded
Vickrey’s model, and compared the social optimum and no-toll equilibrium. Furthermore, that
study was extended to the situation of two different types of commuters in desired work start
time (Arnott, R.et al., 1998), and stochastic capacity and demand in the bottleneck (Arnott, R.
et al., 1999).

On the other hand, railroad commuting demand distribution along time has been studied from
late 1980’s. Iedaet al. (1988) developed a logit model to describe the commuters’ choice over
the trade-off among time, congestion and transfer. Based on that model, they estimated eco-
nomic evaluation of several service schedule alternatives, but cost structure of railroad company
was missed in this study. Kobayashiet al. (1997) began to develop a partial equilibrium model
to describe the interaction between railroad company and commuters. Because railroad service
market is differentiated by departure time, commuters can choose sub-market by deciding his/
her departure time. In the field of urban economics, optimal control model skillfully analyzed
spatially differentiated market (Fujita, 1989), that give a good guidance for their modeling.

Because all of above studies only treated single transport system, we cannot apply these models
directly to the problem with modal shift. Tabuchi (1993) considered road system with alternate
railroad system. He showed the optimal modal split under marginal cost of railroad is set con-
stant. Furthermore, he made clear the optimal congestion charge for automobile commuters.
Danielis and Marcucci (2002) expanded Tabuchi’s model, and analyzed the congestion charg-
ing when railroad fare is set by marginal or average cost. Arnottet al. (2000) applied concepts
of the classical urban transport economics, and analyzed the second-best congestion charge,
amount of railroad facilities and railroad fare. Because these models ignore commuting time
distribution, we cannot analyze the change in these distributions when we introduce congestion
charging to railroad commuters.

3. FORMULATION OF THE MODEL

3.1 Problem Settings of Our Study

We assume a single road and a railroad connecting a residential area with a central business
district (CBD), as shown inFigure 1. The road has one bottleneck just before the CBD, where
point queue occurs when traffic is over bottleneck’s capacity,k(vehicle/min). Furthermore, we



Figure 1. Assumed Commuter Road and Railroad Network

assume that automobile commuters cannot overtake earlier commuters.

All of N commuters drive their vehicle or ride commuter train to CBD where they have their
jobs. They can choose both transportation system for commuting, and no other transportation
mode can be used. It is assumed that vehicles are driven at constant speed from home to just
before the bottleneck, and the duration for this section is equal to constant,w(min), regardless
of housing location of the commuters. On the other hand, duration of commuter trains from the
residential station to the CBD station is assumed to be constant,κ(min) regardless the railroad
congestion level. Furthermore, we ignore access duration from home to the residential station
and egress duration from the CBD station to the job site. In addition, we assume that the
railroad company must operate commuter trains, whenever commuters hope that they get on
these trains. For these reasons, commuters can get on commuter trains without waiting time at
the stations. If we carry out congestion charging, we charge the optimal charge at each instant
for each transport mode. It is assumed that we charge automobile commuters at the exit of the
bottleneck and railroad commuters at the CBD station, respectively.

All firms in the city are located at the CBD and they start working atT f . Because they do not
permit that commuters delay at work start timeT f , all commuters must arrive their firms no
later thanT f .

3.2 Disutility of Automobile Commuting

Disutility level, Ua(q), of a representative automobile commuter,q, is defined as the following
functions;

Ua(q) = e{ma(q) − (a(q) + w)} + c
{
T f − a(q)

}
+ υ {ma(q) − a(q)} + ρa(q) (1)

where,a(q): home departure time,ma(q): office arrival time,e: time value of disutility of
queuing time (yen/min), c: time value of schedule cost (yen/min), υ: fuel cost per unit of
driving time (yen/min),ρa(q): congestion charge (yen). In this equation the first term represents
the disutility of queuing time at bottleneck, the second term represents the schedule cost for
early home departure, the third term represents the fuel cost, and the last term represents the
congestion charge if we carry out the congestion charging. In addition, we assume that the fuel
cost is in proportion with the duration of driving time, and unit of fuel cost per driving minute,
υ, is given by unit fuel price (yen/`) / fuel expense (km/`) × legal speed (km/min).

3.3 Disutility of Railroad Commuting

Disutility level, Ur(t), of representative railroad commuter is given by the following function
of office arrival time,t, which is equal to an arrival time at CBD station by the assumption;

Ur(t) = κ (s(t))η + c
{
T f − (t − κ)

}
+ BC + ρr(t) (2)

where,s(t): congestion level of train arriving CBD att. This is positive ands(t) = 1 means that
number of commuters on the train equals to the number of seats. Furthermore, we ignore limits



of train’s capacities.κ: duration of commuter trains from the residential station to the CBD
station (min),η: elasticity of the congestion disutility of train,BC: railroad fare level (yen),
which is a constant regardless oft, andρr(t): congestion charge (yen). In this equation, the first
term represents the disutility of congestion in train, the second term represents the schedule
cost for early home departure, and the last two terms are monetary costs.

We define thatu(t) is instant supply rate of seats on the trains by the railroad company, and
continuous function. Furthermore,mr(t) is cumulative number of arriving commuters at CBD.
We can derive a following equation for marginal number of arriving commuters at CBD, ˙mr(t);

ṁr(t) = s(t)u(t) (3)

Railroad operating cost,TRC, is considered as the following integral of instant operating cost,
which is a increase function of supply ratesu(t) at timet. That integral is done from the arrival
time at CBD of the first commuter,Tr , to the arrival time of the last commuter,T f .

TRC =

∫ T f

Tr

ζu(t)ιdt (4)

where,ζ: parameter,ι(> 1): elasticity of the instant operating cost functions. Let us consider
that fare level is regulated to be the average cost. When total number of railroad commuters is
Nr , the average fare level per commuter,BC, is given as follows;

BC = TRC/Nr (5)

Usually in existing studies, it is considered that fixed cost occupies a major part of railroad
transport cost. Because this fixed cost is, however, a constant regardless of number of railroad
commuters, and it does not influence on the essential structure of our problem, then we ignore
the fixed cost.

4. DISTRIBUTIONS OF COMMUTING TIME AND MODAL SPLIT MODEL WITH-
OUT CONGESTION CHARGING

In this chapter, we consider no-toll situation;ρa(q) = 0 andρr(t) = 0. Every commuter can
get the same disutility level in no-toll situation regardless of home departure time and modal
choice: because someone could improve disutility by changing his/ her schedule or modal
choice if he/ she would get worse disutility than others. Let us consider that the social cost
which is defined as the sum of all commuters’ disutility is minimized with constant disutility
constraint. We call this problem “System Equilibrium (S.E.)” problem.

4.1 Distributions of Commuting Time of Automobile Commuters

Whenever queue occurs at the bottleneck, traffic outflow rate equalsk (veh./min). When traffic
outflow rate is smaller thank, the schedule cost increases along time. Then, office arrival time
ma(q) satisfies the following equations;

m′a(q) ≡ dma(q)
dq

=
1
k

(6a)

m(q) =
q
k

+
(
T f − Na/k

)
(6b)

where,Na: number of automobile commuters.



When number of automobile commuters,Na, is given, considering equilibrium constraint for
the automobile commuter’s disutility, dUa(q)/dq = 0, we can derive the distribution of home
departure time,a(q), as follows;

a(q; Na) =

( e+ υ

e+ c + υ

) q
k

+

(
T f − Na

k
− w

)
(7)

Then, we can calculate the equilibrium disutility level of automobile commuter,Ua(q), and the
social cost for automobile commuting,SCa, as follows;

Ua(q; Na) =
c
k

Na + (c + υ) w (8)

SCa(Na) ≡ Ua(q) · Na =
c
k

N2
a + (c + υ) wNa (9)

4.2 Distributions of Commuting Time of Railroad Commuters

When number of railroad commuters,Nr , is given, considering equilibrium disutility constraint
in railroad commuter,̇Ur(t) ≡ dUr(t)/dt = 0, we can derive the congestion level of train arriving
CBD at t, s(t), as follows;

s(t; Nr) = (c (t − Tr(Nr)))
1
η (10)

where,Tr is arrival time at CBD of the first commuter, and function for number of railroad
commuters,Nr .

Then, we can calculate the equilibrium disutility of railroad commuter,Ur(q), as follows;

Ur(t; Nr) = c
(
T f − (Tr(Nr) − κ)

)
+ BC (11)

Considering that average fare level,BC, is derived by railroad operating cost,TRC, the social
cost for railroad commuting,SCr , is derived as follows;

SCr(Nr) = c
(
T f − (Tr(Nr) − κ)

)
Nr +

∫ T f

Tr

ζu(t)ιdt (12)

As mentioned above, the social cost minimization for railroad commuting with feasible con-
straint (3) can be formulated as the following optimal control program;

min
u(t)

SCr = c
(
T f − (Tr(Nr) − κ)

)
Nr +

∫ T f

Tr

ζu(t)ιdt (13a)

subject to ṁ(t) = s(t)u(t) (13b)
m(Tr) = 0 (13c)
m(T f ) = Nr (13d)

We can theoretically solve the above program (13) using the optimal control theory, and derive
the cumulative number of arriving commuters at CBD,mr(t), the instant supply rate of railroad



company,u(t), and the arrival time at CBD of the first commuter,Tr , as follows;

mr(t; Nr) =

(
t − Tr(Nr)

T f − Tr(Nr)

) 1
ηθψ

Nr (14)

u(t; Nr) =

(
cNr

ηθψκ

) (c
κ
(T f − Tr(Nr)

)− 1
ηθψ

(c
κ

(t − Tr(Nr))
) 1
ηθ

(15)

Tr(Nr) = T f − κc
(

cNr

ηθψκ

) 1
φ
(
ζ

ηψκ

) 1
φθ

(16)

where,θ ≡ ι − 1,ψ ≡ 1/(1 + θ + ηθ), andφ ≡ (1 + η)(1 + θ)/(ηθ).

Then, we can calculate the average fare level,BC, the railroad operating cost,TRC, the equi-
librium disutility of railroad commuter,Ur(t), and the social cost for railroad commuting,SCr ,
as follows;

BC(Nr) = ηψκ

(
ζ

ηψκ

) 1
φθ

(
cNr

ηθψκ

) 1
φ

(17)

TRC(Nr) = ηψκNr

(
ζ

ηψκ

) 1
φθ

(
cNr

ηθψκ

) 1
φ

(18)

Ur(t; Nr) = cκ + κ (1 + ηψ)

(
ζ

ηψκ

) 1
φθ

(
cNr

ηθψκ

) 1
φ

(19)

SCr(Nr) ≡ Ur(t) · Nr = cκNr + κNr (1 + ηψ)

(
ζ

ηψκ

) 1
φθ

(
cNr

ηθψκ

) 1
φ

(20)

4.3 Modal Split

Modal split between road and railroad commuting is given by the unique solutionN∗r satisfying
the following equation, which means that the disutility levels of railroad commuting (19) is
equal to that of automobile commuting (8).

(1 + ηψ)

(
ζ

ηψκ

) 1
φθ

(
cN∗r
ηθψ

) 1
φ

+
c
k

N∗r +

{
cκ − c

k
N − (c + υ) w

}
= 0

(21)

where,N∗r satisfiedNr = N∗r , Na = N − N∗r .

5. DISTRIBUTIONS OF COMMUTING TIME AND MODAL SPLIT MODEL WITH
CONGESTION CHARGING

Let us carry the congestion charging out;ρa(q) ≥ 0, ρr(t) ≥ 0. We can treat disutility of each
mode separately, when number of automobile commuters,Na, and that of railroad commuters,
Nr are given. Let us consider the optimal charging which minimizing the social cost on each
mode.



5.1 Distribution of Commuting Time of Automobile Commuters and Revenue of Con-
gestion Charge

When number of automobile commuters,Na, is given, because traffic outflow rate equalsk
(veh./min) at the bottleneck, nobody can improve his/ her schedule cost to change his/ her office
arrival time compared with the S.E. situation. Therefore, we can achieve the optimal situation
which social cost becomes minimal by the perfect internalization of externality of congestion
via congestion charging. This means the optimal charge equals disutility of congestion in S.E.
situation. Then, home departure time,a(q), office arrival timema(q), and congestion charge,
ρa(q) satisfy the following equations;

a(q; Na) + w = ma(q; Na) =
q
k

+

(
T f − Na

k

)
(22)

ρa(q) =
c
k

q (23)

Then, we can calculate the social cost for automobile commuting,SCo
a, and the revenue of

congestion charge,PRa, as follows;

SCo
a(Na) =

c
2k

N2
a + (c + υ) wNa (24)

PRa(Na) =
1
2

c
k

N2
a (25)

When the revenue is not returned to the commuters, disutility of the automobile commuters,
Uo

a, is shown as follows;

Uo
a(Na) =

c
k

Na + (c + υ) w (26)

This equation shows disutility of automobile commuting is equal to that of S.E. situation if
number of automobile commuters is same.

5.2 Distribution of Commuting Time of Railroad Commuters and Revenue of Conges-
tion Charge

From social point of view, the congestion charge is revenue, and payment of commuters is
compensated. Therefore, social cost for railroad commuting with the congestion charging,
SCo

r , is given as follows;

SCo
r =

∫ T f

Tr

[
ṁr(t) (Ur(t) − ρr(t))

]
dt

=

∫ T f

Tr

[
s(t)u(t)

{
κs(t)η + c

(
T f − (t − κ)

)}
+ ζu(t)ι

]
dt (27)

As mentioned above, the social cost minimizing program for railroad commuting with the
congestion charging can be formulated as the following optimal control program with control
variables,s(t), andu(t);

min
s(t),u(t)

SCo
r =

∫ T f

Tr

[
s(t)u(t)

{
κs(t)η + c

(
T f − (t − κ)

)}
+ ζu(t)ι

]
dt (28a)

s.t. ṁr(t) = s(t)u(t) (28b)
mr(Tr) = 0 (28c)
mr(T f ) = Nr (28d)



We can theoretically solve the above program (28) using the optimal control theory, and derive
the cumulative number of arriving commuters at CBD,mr(t), the congestion level of train,
s(t), the instant supply rate of railroad company,u(t), and the arrival time at CBD of the first
commuter,Tr , as follows;

mr(t; Nr) =
ζθ

c

(
ηκ

ζι

) 1+θ
θ

(
c (t − Tr(Nr))
κ (1 + η)

)φ
(29)

s(t; Nr) =

(
c (t − Tr(Nr))
κ (1 + η)

) 1
η

(30)

u(t; Nr) =

(
ηκ

ζι

) 1
θ
(
c (t − Tr(Nr))
κ (1 + η)

) 1+η
ηθ

(31)

Tr(Nr) = T f − κ (1 + η)
c

(
cNr

ζθ

) 1
φ
(
ζι

ηκ

) η
1+η

(32)

Then, we can calculate the congestion charge,ρr(t), the average fare level,BC, the railroad op-
erating cost,TRC, the social cost for railroad commuting,SCo

r , and the revenue of congestion
charge,PRr , as follows;

ρr(t; Nr) =
cη

1 + η
(t − Tr(Nr)) (= ηs(t)η) (33)

BC(Nr) = ζ
1
φθ

φ

1 + φ

(
η

ι

) 1
1+η

(cNr

θ

) 1
φ

(34)

TRC(Nr) = ζ
1
φθ Nr

φ

1 + φ

(
η

ι

) 1
1+η

(cNr

θ

) 1
φ

(35)

SCo
r (Nr) = cκNr + ζ

1
φθ Nr (1 + η)

φ

1 + φ

(
ι

η

) η
1+η (cNr

θ

) 1
φ

(36)

PRr(Nr) = ζ
1
φθ Nr

φκη

1 + φ

(
ι

κη

) η
1+η (cNr

θ

) 1
φ

(37)

When the revenue is not returned to the commuters, disutility of the railroad commuters,Uo
r , is

shown as follows;

Uo
r (Nr) = cκ + ζ

1
φθ (1 + 2η)

κφ

1 + φ

(
ι

κη

) η
1+η (cNr

θ

) 1
φ

(38)

This equation shows that disutility of railroad commuting is lower than that of S.E. situation
if number of railroad commuters is same, because period of commuting time becomes longer
in order to decrease peak congestion level under the congestion charging. Therefore, when the
revenue is not returned to the commuters, disutility level becomes worse by introduction of the
congestion charging.

5.3 Congestion Charge and Return Schemes and Modal Split

Let us consider that commuters are carried congestion charge and return schemes out on both
modes, using above models. In addition, we assume that full revenue is returned to commuters,
and the return each commuter is equal to others in same mode.



(I) Charge for Automobile Commuters

In case of charge for automobile commuters (casei), the distributions of automobile commuting
time represent Eq. (22). The distribution of railroad commuting time represents Eq. (14) in
S.E. situation. When ratex of the revenue (25) distribute to railroad commuters, and rate (1−x)
of that distribute to automobile commuters, utilities of each mode after the return represent as
follows;

U i
a(x; Na) = Uo

a(Na) − (1− x) PRa/Na (39a)

U i
r(x; Nr) = Ue

r (Nr) − x · PRa/Nr (39b)

where,Na + Nr = N. From first-order condition forNr , followings equations are derived;

∂U i
a(x; Nr)
∂Nr

= − c
2k

(1 + x) < 0 (40a)

∂U i
r(x; Nr)
∂Nr

=

(
1 + ηψ

φ

) (
ζ

ηψκ

) 1
φθ

(
c

ηθψκ

) 1
φ

N
1
φ−1
r + x

c
2k


(

N
Nr

)2

− 1

 > 0 (40b)

Then, equilibrium modal split is derived fromNr = N∗r , Na = N − N∗r satisfiedU i
a(x; N∗a) =

U i
r(x; N∗r ), and we can derive unique solution as following equation;

(1 + ηψ) N∗r

(
ζ

ηψκ

) 1
φθ

(
cN∗r
ηθψκ

) 1
φ

− 1
2

c
k
(
N − N∗r

) (
xN + N∗r

)
+ {cκ − (c + υ) w}N∗r = 0(41)

(II) Charge for Railroad Commuters

In case of charge for railroad commuters (caseii ), the distribution of railroad commuting time
represents Eq. (29). The distributions of automobile commuting time represent Eq. (6b), (7) in
S.E. situation. When ratex of the revenue (37) distribute to railroad commuters, and rate (1−x)
of that distribute to automobile commuters, utilities of each mode after the return represent as
follows;

U ii
a(x; Na) = Ue

a(Na) − (1− x) PRr/Na (42a)

U ii
r (x; Nr) = Uo

r (Nr) − x · PRr/Nr (42b)

From first-order condition forNr , followings equations are derived;

∂U ii
a(x; Nr)
∂Nr

= −c
k
− (1− x)

ζ
1
φθ κη

1 + φ

(
ι

κη

) η
1+η (cNr

θ

) 1
φ
(
(1 + φ) N − Nr

(N − Nr)
2

)
< 0 (43a)

∂U ii
r (x; Nr)
∂Nr

= ζ
1
φθ

κ

1 + φ

(
ι

κη

) η
1+η (c

θ

) 1
φ

N
1
φ−1 (1 + η (2− x)) > 0 (43b)

Then, equilibrium modal split is derived fromNr = N∗r , Na = N − N∗r satisfiedU ii
a(x; N∗a) =

U ii
r (x; N∗r ), and we can derive unique solution as following equation;

ζ
1
φθ

φκ

1 + φ

(
ι

κη

) η
1+η

(
cN∗r
θ

) 1
φ {

(1 + η (2− x)) N − (1 + η) N∗r
}

−c
k
(
N − N∗r

)2
+ {cκ − (c + υ) w} (N − N∗r

)
= 0 (44)



(III) Charge for Both Automobile and Railroad Commuters

In case of charge both automobile and railroad commuters (caseiii ), the distributions of auto-
mobile commuting time represent Eq. (22), and that of railroad commuting time represents Eq.
(29). When ratex of the revenue (25)+(37) distribute to railroad commuters, and rate (1− x)
of that distribute to automobile commuters, utilities of each mode after the return represent as
follows;

U iii
a (x; Na) = Uo

a(Na) − (1− x) (PRa + PRr) /Na (45a)

U iii
r (x; Nr) = Uo

r (Nr) − x (PRa + PRr) /Nr (45b)

From first-order condition forNr , followings equations are derived;

∂U iii
a (x; Nr)
∂Nr

= − (1 + x)
c
2k

− (1− x)
ζ

1
φθ κη

1 + φ

(
ι

κη

) η
1+η (cNr

θ

) 1
φ
(
(1 + φ) N − Nr

(N − Nr)
2

)
< 0 (46a)

∂U iii
r (x; Nr)
∂Nr

= x
c

2K


(

N
Nr

)2

− 1



+ζ
1
φθ

κ

1 + φ

(
ι

κη

) η
1+η (c

θ

) 1
φ

N
1
φ−1 (1 + η (2− x)) > 0 (46b)

Then, equilibrium modal split is derived fromNr = N∗r , Na = N − N∗r satisfiedU iii
a (x; N∗a) =

U iii
r (x; N∗r ), and we can derive unique solution as following equation;

ζ
1
φθ

κφ

1 + φ

(
ι

κη

) η
1+η (c

θ

) 1
φ (

N∗r
)1+ 1

φ
{
(1 + η (2− x)) N − (1 + η) N∗r
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(IV) First-Best Charge

In this section, let us consider that the first-best problem which is minimized the social cost
((24)+(26)). We call this problem system optimum (S.O.) one. The optimal modal split is
derived as following equation;
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6. NUMERICAL EXAMPLE

In this section, we show numerical examples to use the models in the last section. Param-
eter values for the numerical examples below are given as follows;c = 10(yen/min), e =
20(yen/min), k = 110(veh./min), υ = 6.67(yen/min), w = 30(min), η = 4.5, ι = 3.1,
ζ = 0.0008,κ = 20(min),N = 50,000,T f = 9 : 00.



Figure 2. Distributions of Commuting Time in S.E.

6.1 Distributions of Commuting Time

Figure 2 shows the schedule pattern and the modal split without the congestion charging (S.E.).
In this numerical simulation,N∗a = 3,401 andN∗r = 46,599. Home departure time of the first
automobile commuter is 7:59, and that of the first railroad commuter is 7:55.

On the other hand,Figure 3 shows the schedule pattern and the modal split with the optimal
congestion charging (S.O.). In addition, they show distribution of congestion charge. In this
numerical simulation,No

a = 5,158 andNo
r = 44,842, then, automobile commuters increase

1,757. Furthermore, home departure time of the first automobile commuter is 7:43, and that
of the first railroad commuter is 7:23. Because congestion levels of trains are decreased, the
period of railroad commuting time is longer than S.E. situation in spite of number of railroad
commuters is decrease.

6.2 Economic Evaluation for Congestion Charge and Return Schemes

First, we analyze the return only to automobile commuters (case (I )) which is x = 0, and only
to railroad commuters (case (II )) which is x = 1, as return schemes. Therefore, we consider
the combination schemes of charges (case (i), (ii )) and returns (case (I ), (II )).

Figure 4 shows disutility levels each mode when modal split is given under each charge and
return scheme. Furthermore, equilibrium modal split (solution) is shown as a white circle under
each charge and return scheme. In addition, black circle shows S.E. and S.O. situation in order
to compare with each scheme.

In S.E. situation, equilibrium disutility is−809 (yen).

When congestion charge and return schemes are carried out only to automobile commuters
{iI }, number of automobile commuters is increase. Because marginal disutility of railroad
commuter is not elastic, equilibrium disutility level does not be improved as compared with
that of S.E. On the other hand, when congestion charge and return schemes are carried out
only to railroad commuters{iiII }, number of railroad commuters is increase. Because marginal
disutility of automobile commuter is, then, elastic, equilibrium disutility level is improved
effective as compared with that of S.E.



Figure 3. Distributions of Commuting Time and Congestion Charge in S.O.

Figure 4. Disutility Levels under Each Charge and Return Schemes



Figure 5. Equilibrium Disutility Levels Each Return Rate

When congestion charge is carried out to automobile commuters and return is carried out to
railroad commuters{iII }, modal split and equilibrium disutility level do not change, because
the amount of the revenue is small and the return of each railroad commuter is very low. On the
other hand, when congestion charge is carried out to railroad commuters and return is carried
out to automobile commuters{iiI }, number of automobile commuters is increase drastically,
and equilibrium disutility level is worse.

Finally, we consider that the schemes of revenue are divided to automobile and railroad com-
muters (0≤ x ≤ 1). Figure 5 shows equilibrium disutility and modal split eachx.

When congestion charge is carried out to automobile commuters{i}, modal split is change
corresponding to the return ratex, but disutility level does not change. On the other hand,
when congestion charge is carried out to railroad commuters{ii }, equilibrium disutility level is
improved ifx is over than 0.62 as compared with S.E. situation.

7. CONCLUSION

We have proposed and solved the optimal control models to simultaneously determine the
distribution of home departure time and the modal choice between road and railroad with/
without the congestion charging. We theoretically have made clear the optimal congestion
charge each time of day for each transport mode. Furthermore, we have analyzed influence of
return scheme on the modal choice.

From results of numerical simulation using above models, we have shown that scheme of return
to other mode does not improve utility. Another implication is that the charging schemes
to railroad commuters is more effective to improve commuter’s disutility and to reduce the
number of automobile commuters in contrast with the road charging scheme which is examined
by many local governments.

It should be noted, however, that we set very strong assumptions such as commuter’s behavior
neglects personal heterogeneity, road and railroad line are both only single line, and access
and egress time are ignored. In future works, we should relax these unrealistic assumptions.
However, from the viewpoint of travel behavior modeling, these models seem far from the



reality. But owing to the simplifications, we get analytical tractability. If we combine more
reliable parameter values based on behavior analysis, we can expect the market equilibrium and
effect of policies can be more precisely calculated. Especially, we need to correctly estimate
the time value in order to success the congestion charging.
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